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Abstract. Two dimensional simulations of percolation are realized on square networks of pore throats with
a random capillary pressure distribution. We analyse the influence of a destabilizing gravity field (g) and
of the standard deviation of the distribution of the capillary pressure thresholds (Wt). The fragmentation
process is not taken into account in this study. For an increase of g or/and when Wt decreases, two
transitions are analyzed with three different regimes displacement patterns: Invasion percolation, invasion
percolation in a gradient, and invasion in a pure gradient. The transitions are controlled both by the ratio
g/Wt and by the sample size (L). A scaling law between the saturation at the percolation threshold and
g/Wt allows delineating the three regimes in agreement with theoretical argument of the percolation in a
gradient.

PACS. 47.55.Mh Flows through porous media – 61.43.Hv Fractals; macroscopic aggregates (including
diffusion-limited aggregates) – 47.55.Kf Particle-laden flows

Introduction

The study of immiscible flow in a random porous media
has been a very active area of research in the past and
in recent years, in particularly due to its close connection
with petroleum engineering and hydrology [1]. Particu-
larly, the modeling of oil secondary migration [2] and non
aqueous phase liquid migration in groundwater [3] is a
major challenge due to the multi scale heterogeneous na-
ture of the porous media [4]. The different physical and
hydrodynamic parameters influencing the fluids flow are
the gravity, the viscosity, and the capillarity. These forces
can act simultaneously and have important implications
in the determination of the non wetting fluid volume lost
during migration.

In the absence of gravity and viscous effects, Inva-
sion Percolation (IP) model has been used to simulate
the slow displacement of a wetting fluid by a non wet-
ting fluid in a porous medium [5,6]. The displacement
is quasistatic and the process is represented by a clus-
ter growth on a lattice of throats. The non wetting fluid
enters preferentially in the larger throats where the cap-
illary resistance is the smallest. Then, the invasion can
be controlled by a step by step procedure and the cap-
illary forces which are randomly distributed. At break-
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through, the percolation cluster is fractal. In the absence
of trapping, theoretical argument can be developed for the
fractal dimension calculations [7], leading for two dimen-
sional system to D = 91/48 ≈ 1.89. When the trapping
rule is applied, regions surrounded by the invading phase
become disconnected, and experiments and simulations
have reported that the fractal dimension is D ≈ 1.82 [6].
When the wetting and non-wetting fluids have different
densities, the hydrostatic pressure density gradient pro-
duced will either stabilize or destabilize the fluid dis-
placement process (Invasion Percolation in a Gradient,
IPG). Gravity-stabilized invasion percolation [8–11] has
been studied both numerically and experimentally. In this
case, an invasion front propagates randomly and leaves be-
hind trapped regions. When the stabilizing field gradient
is increased, the percolation is influenced by the hydro-
static pressure gradient and this competition produces a
decrease of the front width. Gravity-unstabilized invasion
percolation was also studied both numerically [12,13] and
experimentally [14,15]. The displacement pattern is then
dominated by a single branch, and the width of this branch
decreases if the density gradient is increased. On length
scales smaller that the width of the branch, the structure
of invasion is fractal, with the same fractal dimension as
in IP displacement. The power law relating the width of
the blobs and the field gradient was confirmed through
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numerical simulations [12] and three dimensional column
experiences [14]. More recently, the fragmentation [14–17]
of invasion percolation cluster was analysed: this phenom-
ena can occur when high density contrast allows snap-off
events that produces migration of disconnected fragments
of the non wetting fluid. An equal fractal dimension was
found between the fragments and the IP percolation clus-
ter [16,17]. The fragmentation structures could described
in terms of standard IP and IPG theories, and it was
pointed out that further study should take into account
the effect of more complex heterogeneities.

In this study, we wish to investigate numerically the
effect of the Probability Distribution Function (PDF) of
the pore throat in an IPG destabilized process, in the ab-
sence of fragmentation process (for simplification reason).
Hirsch [18] presented numerical simulations for three di-
mensional IPG. Based on simulations for different pore
throat PDF, empirical relations were proposed for the sat-
uration at the percolation threshold. However, in the net-
work, the thresholds are controlled by the capillary pres-
sure, which varies as the inverse of the throat size. Then,
the capillary pressure PDF is a more tractable control-
ling parameter to study IP or IPG. Then, the heterogene-
ity influence for IPG in a destabilizing gradient was usu-
ally investigated for different capillary pressure PDF as
in [11–13,15,19,20]. The exponent of the power law men-
tioned above (relating the width of the blobs and the field
gradient) was found independent of the PDF [12]. The het-
erogeneity effect on invasion percolation was studied with
spatially correlated networks, taking the invasion thresh-
olds with self affine distributions [19,20]. It was shown
that in the presence of trapping, the cluster is fractal, and
its fractal dimension increases with the spatial correlation
of the threshold distribution. In the presence of gravita-
tional forces, it was recently shown that the width of the
capillary pressure PDF controls the width of the perco-
lation clusters [13,15]. This finding was studied in details
with self affine distributions of the thresholds. The theory
presented in [15] was generalized with gravitational and
viscous forces, and confirmed with two dimensional ex-
periments for stable IPG displacements [11]. Also, the idea
that the standard deviation of the capillary pressure PDF
controls the size of the cluster was given in a IP study with
viscous forces and uniform distribution of threshold [21].

In the present article, we are interested in the non
wetting residual loss during IPG in a destabilizing gra-
dient. We use the same numerical method originally in-
troduced in the study of the density gradient effect [12],
and we analyse here the effect of the pore throat distribu-
tion which is related to the capillary pressure distribution.
The fragmentation process is not considered.

We present the transitions occurring for a variation of
the gradient field or/and the width of the capillary pres-
sure PDF. Three main regimes are observed: IP, IPG, and
purely vertical displacement. A subsequently analysis is
then presented for the residual saturation and the transi-
tions obtained.

Simulation

The simulations are performed using a step by step inva-
sion percolation algorithm described in [8,12]. The porous
medium is represented as a two-dimensional square net-
work of wide throat of size L × L = 200 × 200. A lighter
fluid displaces a denser fluid from the bottom to the top,
in the presence of density and capillary forces. The den-
sity difference between the two fluids is noted ∆ρ and is
taken positive. The gravity acceleration constant is noted
g. As the displacement is considered slow and quasi-static,
the viscous forces are neglected. As in [12], the trapping
effect is taken into account, and we use periodic bound-
ary conditions. The capillary pressure Pc is related to the
pore throat r and the surface tension γ by means of the
Laplace equation Pc = 2 γ/r. The values of Pc are uni-
formly distributed over the range Pmax

c > Pc > Pmin
c .

In the displacement of the non wetting fluid, the buoy-
ancy force is opposed to the capillary pressure. For a pore
located at a height h from the inlet, the invasion perco-
lation algorithm is accomplished at each step where the
difference pressure threshold

∆ρ g h − Pc (1)

is maximum.

Theory

The flow is characterized by the dimensionless Bond num-
ber [8], Bo = ∆ρ g r̄2

γ which is the ratio between gravita-
tional and capillary pressure jump at the pore scale using
the average pore throat size r̄. In gravity-unstabilized per-
colation invasion, it was found that the displacement pat-
tern is dominated by the growth of a single branch [12].
The width of this branch scales with the Bond number
as ξ⊥ ∼ Bo−ν/(ν+1), where ν is the percolation expo-
nent (ν = 4/3 for the two dimensional system). It is im-
portant to note that for stable IPG process, this scaling
law is again valid, but the characteristic length scale is
parallel to the displacement [8,11,12]. Here, the displace-
ment is unstable, and an increase of the Bond number
enhances the instability and reduces the lateral width of
the cluster ξ⊥. For length scale smaller that ξ⊥, the in-
ternal structure of the blobs is fractal, with a fractal di-
mensionality D = 1.82 in two dimension [12]. Thus, the
cluster mass distribution verifies the relationship M ∼ ξD

⊥ ,
and the number of occupied sites by the invading fluid
scales as N ∼ ξD

⊥
L
ξ⊥

. Then, at the scale of the whole
network, the saturation of the invading fluid can be writ-
ten as S0 ∼ N

L2 ∼ 1
L Bo−α, with α = (D−1)ν

ν+1 . For two
dimensional lattices, α ≈ 0.47, so the scaling law reads
S0 ∼ Bo−0.47. Under the assumption that the distribution
of the capillary pressure is slowly varying near the perco-
lation thresholds [12,15], recent calculations have shown
than the correlation length depends on the width of the
capillary pressure PDF Wt = Pmax

c − Pmin
c [13,15]. We

wish to take into account the effect of Wt variations on So.
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Fig. 1. Displacement patterns obtained from two dimensional gradient destabilized site invasion percolation simulations on
a square lattice of size 200 × 200. Displacing fluid appears in black and is injected along the bottom edge of the lattice. The
standard deviation of capillary pressure PDF is Wt = 1. From the left to the right: ∆ρ g are 0.05, 0.5, and 50.

The theory takes also into account the presence of viscous
and gravitational forces [11]. As the viscous effects are ne-
glected in our study, the result of references [11,13,15] can
be written as ξ

r̄ ∼ ( γ
Wt

Bo)−α. Then, the preceding scaling
law for the saturation reads

So ∼ 1
L

(
γ

Wt
Bo

)−α

. (2)

This result shows that the width of the capillary pressure
distribution is an important parameter for the percola-
tion properties in the IPG regime. It important to consider
than this relation is not valid for all Bond number, because
the fragmentation process should modify this scaling law.
However, the transition from an IPG regime (or IP regime)
to a fragmentation process is difficult to analyse quantita-
tively, because the transition is not only controlled by Bo.
The fragmentation process can be enhanced by high den-
sity contrast (at high Bond number) or/and high height
of non wetting fluid accumulation (not necessarily at high
Bond number). This phenomena is then particularly com-
plex, especially in the presence of heterogeneities, and it
will not be considered here in first approach. Then in this
paper, we use the results obtained from standard IPG sim-
ulation process, as introduced in [5], and intensive simula-
tions are carried out to confirm equation (2) and to check
its range of applicability for a large range of Bond number
and a large range of width of the capillary pressure PDF.

Simulation results

An extensive series of simulations were carried out us-
ing the two-dimensional site-invasion gradient destabilized
percolation model described above. In the simulation of
Figure 1, the injection is done along the bottom edge of
the lattice. However, the pattern rapidly evolves as a single
branch; this effect is very noticeable for high Bond num-
ber. The images of Figure 1 show than the lateral width of
the displacement pattern decreases with the Bond num-
ber. When Bo = 0, the process is only controlled by the
pore throat size distribution (IP) [5,6], the string is not

Fig. 2. So is plotted versus Bond number in a Log–Log plot for
three fixed values of the width of the capillary pressure PDF
(Wt = 5� , and Wt = 100 + , and Wt = 1000 �). The solid
lines are a guide to the eye, with a –0.47 slope in accord with
equation (2). Results are averaged over 1000 realizations.

present and the invasion process is random. When the
buoyancy forces increase, the probability for a vertical dis-
placement increases with the density difference (∆ρ) and
the height (h) of the connected cluster. This explains why
the cluster width decreases with the Bond number [12].
For very high Bond number, the capillary forces are neg-
ligible, and the displacement pattern is dominated by a
nearly vertical single branch (Fig. 1c). We call this regime
Invasion in a Gradient (IG).

The saturation at the percolation threshold is pre-
sented versus Bond number for four fixed values of Wt

(Fig. 2). Simulations were performed using a bottom edge
injection or a single point injection, but these boundaries
conditions did not produce differences for all the results
presented here. For the four values of Wt tested in this
simulation, there are three domains in the curve. In the
first one (for very low Bond number), the capillary forces
dominate the displacement (IP), the saturation reaches a
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Fig. 3. Displacement patterns obtained from two dimensional IPG simulations on a square lattice of size 200× 200. ∆ρ g = 0.2
is now fixed, and we test the effect of the width of the capillary pressure PDF. From the left to the right Wt are 0.7, 0.1, and
0.02.

constant value. In the second domains, an increase of the
density difference gives rise to a competition between cap-
illary and buoyancy forces, and the power law between So
and Bo is well verified (with α ≈ 0.47), in agreement with
the theory of percolation in a destabilizing gradient [12].
In the third domains, for large Bond number, So reaches
a second plateau. For infinite Bond number, the invading
fluid pattern is a single and vertical line (N = L), so the
asymptotical value for So at high Bond number is 1/L.
This behavior with three domains is very well verified for
the four distributions of the capillary pressure. We ob-
serve than the transitions values from IP to IPG and IPG
to IG do not occur for the same values of the Bond num-
ber, those transitions values depend on the width of the
capillary pressure PDF. When the width of the capillary
pressure PDF increases, the curve So of Figure 2 is shifted
to the right. The pore throat size distribution is wider, and
the effect of the density difference appears afterward with
higher Bond number. This result suggests analyzing more
precisely the effect of the capillary pressure PDF for a
given value of the Bond number.

Simulations were carried out to investigate the effect
of Wt. The typical resulting patterns of the displacement
are presented in Figure 3, where ∆ρ g = 0.2, and with
three different tested values Wt. The figure reveals that
the width of the cluster increases with the width of the
capillary pressure PDF. For very large PDF, the high vari-
ability in the pore throat size distribution makes the re-
sulting pattern very random. Although Bo �= 0, the pat-
tern is very similar to the pattern observed for very low
Bond number (IP, Fig. 1a). In the other hand, for very nar-
row PDF, the capillary pressure threshold is less random,
so the capillary pressure influence is hidden and the grav-
ity forces predominate for this displacement: the structure
of the cluster is nearly a single line as for very high Bond
number (Fig. 1c). This transition from IP to IPG and to a
string pattern when Wt decreases is similar to the previous
transition described in Figure 1 when the Bond number
increases. A more quantitative analysis of this transition
is presented in Figure 4, where the saturation So at the
percolation threshold is plotted versus 1/Wt . As in Fig-
ure 2, the curve is divided in three parts: The first regime

Fig. 4. So is plotted versus 1/Wt for three particular values
of ∆ρ g. (∆ρ g = 20 +, 2�, and 0.2 ◦). Results are averaged
over 1000 realizations.

corresponds to high values of Wt, where the saturation is
nearly equal to 0.25 as in Figure 2 in the IP regime. In the
second IPG regime, the power law So ∼ (1/Wt)−α is very
well verified for all the tested values of the Bond number.
These results are in good agreement with equation (2). As
in Figure 2, we obtain the third IG regime, for low value of
Wt, where the cluster becomes a single and nearly vertical
line, with So = 1/L.

For a better understanding of the pore throat distri-
bution influence, further simulations were carried out for
different shape of the PDF of the capillary forces. Equa-
tion (1) was replaced by ∆ρ g h − φ(Pc), where Pc is still
a random number uniformly distributed over the range
Pmax

c > Pc > Pmin
c , but φ is a non linear function which

allows to change the PDF of the capillary pressure thresh-
old. The results are shown in Figure 5, for ∆ρ g = 1, and
with 4 different functions φ. The scaling law for the So
dependence on Bond number (Eq. 2) was numerically ver-
ified for different PDF in reference [12]. Here, we study
the influence of 1/Wt on So. The power law (Eq. (2))
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Fig. 5. Plot of the saturation So versus the rescaling variable
Bo/Wt. All the datas of Figures 2 and 4 collapse on a single
curve.

is still valid whatever the PDF, with the same exponent
α ≈ 0.47. This result can be explained using the same
arguments as in [12,15]: at the first order and at the per-
colation threshold, all the PDF have the same shape near
the invaded sites. This result demonstrates that it is cor-
rect to assume than the distribution of the capillary pres-
sure is slowly varying near the percolation threshold [15].
So, the PDF does not affect the exponent of the power
law. However, the amplitude of So is very sensitive to the
PDF, it implies that the distribution and the magnitude of
the capillary forces plays an important role in determin-
ing the displacement pattern and the saturation at the
percolation threshold.

Discusion

The two transitions from IP to IPG and from IPG to IG
are observed when Bo or/and 1/Wt increases. The con-
trol parameter is γBo/Wt, this is a consequence of equa-
tion (2). This parameter was called the the fluctuation
number in [11,15]. If we plot the results of Figures 2 and
4 versus the ratio γ Bo/Wt, all the points collapse on a
single curve (Fig. 5). This curve validates equation (2).
Also, it indicates than the capillary pressure distribution
and the gravity field are both first order parameters for an
accurate description of the IPG regime. Then, the fluctu-
ation number is a much more suitable parameter than the
Bond number [15]. It is important to precise that the val-
idation of equation (2) requires averaging the results over
different realizations, especially in the IP regime, where
the disorder effect is more important. The behaviour of
the standard deviation of So was studied versus Bo/Wt

on a 200 × 200 network, and is shown in Figure 6. Each
point of the standard deviation curve was obtained us-
ing 1000 realizations. As in Figures 2 and 4, there are
again three domains in the curve. In the IP regime, σSo

Fig. 6. Plot of the standard deviation of So versus the the
rescaling variable Bo/Wt. σSo is obtained using 1000 realiza-
tions on a 200×200 network. As in Figures 2, 4, and 5, the
three regimes (IP, IPG, IG) can be distinguished.

is nearly constant. σSo decreases in the IPG regime, but
the decrease begins at Bo/Wt ∼ 10−2, after the transition
zone between the IP domain and IPG domain (observed at
Bo/Wt ∼ 10−3 in the Fig. 5). When Bo/Wt ≥ 10, the IG
regime is reached, the branch is vertical and very narrow,
and σSo reaches asymptotically zero.

For a given value of Wt, the process at Bo = 0 was
studied in details in the past [5,6]. In this regime, the oil
saturation at the percolation threshold scales as LD−2, in
relation with the fractal structure of the cluster at the per-
colation threshold. According to [12], when Bo increases,
the capillary and gravity forces are then comparable, and
the growth of a single branch will dominate the displace-
ment pattern. The power law existing between So and
Bo/Wt allows defining a scaling law for the threshold Bond
number BoIP−IPG ∼ Wt L− 1+ν

ν , which is the critical Bo
value for the transition from IP to IPG. This transition
value is then directly proportional to Wt, so the capillary
distribution controls significantly the transition described
here. It is interesting to note that this transition value de-
creases with the size L of the system, because wider capil-
lary pressure distribution or/and smaller network enhance
random invasion process. This finding can be explained
considering IPG branches of Figures 1 and 3: on a scale
length smaller than the width of the branches, the struc-
ture of invasion is fractal as in IP displacements. Then, a a
decrease of the length scale produces the transition from
IPG to IP. Using similar argument, it is easy to precise
the transition Bond number from IPG to IG, because the
transition occurs when So reaches the asymptotic value
1/L. The Bond number transition value scales simply as
BoIPG−IG ∼ Wt. Then, if the width of the capillary pres-
sure PDF increases, the curve in Figure 2 is shifted to the
right. Finally, a similar analysis can be proposed to inter-
pret Figures 4 and 5, when Wt is a variable with constant
values of Bo. The values of Wt for the transitions from IP
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Fig. 7. So is plotted versus 1/Wt for different PDF shape of
the capillary pressure (Gaussian +, x2 ∇, uniform �, 1/x
�), and ∆ρ g = 1.

to IPG and IPG to IG scale as W IP−IPG
t ∼ Bo L− ν

1+ν

and W IPG−IG
t ∼ Bo respectively.

Finally, the size of the system is an important param-
eter controlling the pattern and the saturation values at
the percolation threshold. It also controls the transitions
values (from IP to IPG). Indeed, the network size influ-
ence has to be analyzed in relation with the correlation
length of the percolation cluster. For this reason, simula-
tions were performed on system of various sizes, in order
to check the transition between the different regimes, and
the size dependence of the final saturation So. The results
are presented in Figure 8, for the same capillary pressure
distribution, but for three typical density contrasts. When
Bo = 0, the power law predicted by the percolation IP the-
ory is So ∼ LD−2. With two dimensional network, this last
relation reads So ∼ L−0.17, and is well verified in Figure 8,
where the slope of the solid line is in good agreement with
IP simulation results. For infinite Bond number, in the IG
regime, the displacement is only vertical and the depen-
dence of So on L is more important with So ∼ L−1 (this
is the dashed line of the Fig. 8). And in the intermediate
IPG regime, the length over which the system is fractal
divides the So relationship in two parts (So ∼ LD−2 when
L � ξ⊥, and So ∼ L−1 when L � ξ⊥). It is important
to note that the cross over length varies as a power law of
the fluctuation number as ( γ

Wt
Bo)−α. For a fixed network

size, an increase of the fluctuation number will reveal the
two transitions from IP to IPG, and IPG to IG (Figs. 1
and 3). For a fixed fluctuation number and a varying size
system, the situation is a little more complex: Transitions
from IP to IPG (respectively from IPG to IP) are possible
when the network size increases (respectively decreases).
However, the IG regime is not affected by the network
size, because a vertical string remains identical at all the

Fig. 8. So is plotted versus the size L of the L×L network, and
for three density contrast: ∆ρ g are 0+, 0.002�, and 0.04∇.
The lines are a guide to the eye. The slope of the solid line is
−0.17, the slope of the dashed line is −1. Three regimes can
again be distinguished: IP and IG (behaviour without cross
over lengths) and IPG (behaviour with a cross over length be-
tween IP and IG).

scales. All these different scaling laws have important im-
plications for a better understanding of the non wetting
residual loss.

Conclusion

For quasistatic invasion controlled by capillary forces un-
der a destabilizing gradient, the displacement patterns
are controlled both by the Bond number, the width of
the capillary pressure PDF, and the size of the system.
When γ Bo

Wt
� L− 1+ν

ν , the behavior of the non wetting
cluster is same as in invasion percolation. When 1 �
γ Bo
Wt

� L− 1+ν
ν , the gravity and the capillarity act simulta-

neously, and this regime is characterized by the growth of
a single branch (invasion percolation in a gradient). When
γ Bo
Wt

� 1, the gravity effect predominates and hides the
heterogeneity and the capillary forces; the displacement is
then purely vertical (invasion in a gradient). The different
regimes are controlled both by the gravity and the het-
erogeneity field through the fluctuation number γ Bo/Wt.
It important to underline than the scaling law found here
are only applicable in the absence of fragmentation pro-
cess. However, the model reveals important quantitative
aspects of vertical non wetting fluid displacement, and it
may provide a basis for further studies. The present model
uses spatially uncorrelated capillary pressure distribution.
Further investigations are needed with more complex het-
erogeneities. The presence of viscous forces should also be
considered.
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